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Abstract 

The aim of this paper is to examine and model the mechanisms that are responsible 

for evaporation of a drop in a multi-component gaseous environment, in the 

simultaneous presence of temperature and mass concentration gradients. Phase change 

of a liquid to vapor may occur following three main mechanisms: 

-  Evaporation by external heat supply from the gas. Heat release occurs through 

the liquid /gas interface. 

-  The evaporation or drying by concentration gradients. The simplest example is  

that a piece of cloth placed in a stream of dry air.  

-  Evaporation of a liquid by decompression. This phenomenon is the one that 

occurs in cavitating and ‘flashing’ flows. In this context, no external energy 

supply is required. The energy necessary to the phase change is already 

contained in the liquid phase, in the form of internal energy.  

Vapor condensation is the symmetrical process compared to the first two ones and can 

thus be treated in the same manner. Therefore we focus on the following mass transfer 

based on diffusive mechanisms: Heat diffusion and molecular diffusion at the 

interface. In the proposed approach, we make a significant change compared to  

models found in the literature: 

- The mechanisms of evaporation due to temperature and concentration 

gradients are considered simultaneously.  

- Unlike conventional models that assume drops at saturation temperature, a 

heating delay is considered.  

In order to have an efficient phase change sub-model for multiphase non-equilibrium 

codes, the subscale model must form and algebraic system and not a differential one. 

In particular, space numerical resolution must be absent.  
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1. Basic local equations inside each phase 

We consider the presence of a pure gas and a pure liquid on both sides of the 

interface. Across the interface exchanges of mass, momentum and energy occur. The 

notation for each phase k are the following: l for the liquid phase and g for the gas 
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phase. The equations of conservation of mass of each chemical species i in the phase k 

are: 

( ) 0
k k i

k k i k k k i k i

Y
Y u D Y

t


 


     


                                  

Where, 

k
 represents the density of phase k which may consist of different chemical species 

in the mixture, 

k i
Y  represents the mass fraction of each chemical species i at the phase k, 

k
u denotes the velocity vector of phase k, 

k i
D  is the mass diffusion coefficient of each chemical species i in the phase k. 

In the description given by the above equation, each phase k represents an ideal multi-

component mixture. All components are in the same physical state (liquid or gas) and 

the mixing is at molecular scale. Consequently, all species i have the same 

temperature which is that of the phase k. 

 

All chemical species at each phase k are assumed to have the same mass diffusion 

coefficient, which means that, 
k i k j k

D D D  .   

The equations of conservation of energy of the phase k are: 

( ) :
k k

k k k k k k k k

E
E u p u q u

t


 


      


 

Where:  

 
k

E  represents the total energy of phase k which is defined by  
1

.
2

k k k k
E e u u  , in 

which, 

 
k

e  represents the internal energy of phase k, 

 
k

q  denotes the heat flux that diffuses at phase k, 

Energy production by viscous dissipation is neglected. It means that: : 0
k k

u   . 

The flow is assumed to be isobaric (constant pressure through time: 0
k

d p

d t
 ). This 

assumption is realistic since an evaporation front spreads in general at very low speed 

and the diffusion speed for both heat and mass is quite small (less than mm/s). At both 

sides of the evaporation front and through it significantly fast acoustic wave 

propagates (with speed of the order of 1000 m/s). The speed of these waves has the 

effect to almost instantly equilibrate the pressures that would appear through the 
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evaporation front. Considered the flow as isobaric is a commonly used assumption in 

combustion theory. This approximation allows avoiding consideration of the 

equations of motion of each phase. Thus no momentum equation is considered. 

Writing the above two equations in the coordinate reference system of the interface 

(which moves at the speed  ) we will obtain the same system of equations as these 

equations are Galilean invariant. The only modification appears in the velocity 

definition that is expressed in the reference frame of the interface. Using the total 

enthalpy definition k

k k

k

p
h E


   and substituting in the previous equation we get 

the following system of governing equations: 

             ˆ( ) 0
k k i

k k i k k k k i

Y
Y u D Y

t


 


     


 

ˆ( ) 0
k k

k k k k

E
h u q

t





    


 

Where ˆ
k k

u u   . 

Hereafter the notation ‘ .
ˆ
’ will be omitted. 

2. Interface jump conditions 

We consider the case where a drop of pure liquid is evaporating into air. There are 

two phases k which are considered and two chemical species: water and air.  

Initial conditions  

Inside the drop:               
,

1
l w a te r

Y             and       
,

0
l a ir

Y    

Outside the drop:            
,

0
g w a te r

Y            and       
,

1
g a ir

Y   

Through time evolution the concentration of gas varies (
,

0
g w a te r

Y   and 
,

1
g a ir

Y  ) 

but the concentrations in  the liquid phase remain invariant. 

Consider a finite volume at the interface of the drop as shown in the picture below: 
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The above equations are integrated in the volume control. As the interface is a 

discontinuity and the equations are expressed in the front frame of reference, time 

derivatives of System are dropped.  

At each point M (x, y, z) of the volume control, the flow variables have their own 

value and in particular these variables are discontinuous through the interface except 

for the pressure that is assumed constant, at least at leading order: 

 ( ) 0
i i

V

Y u D Y d V       

                                                ( ) 0

V

h u q d V     

Using Gauss theorem they become:  

                                            ( ) 0
i i

S

Y u D Y nd S      

                                               ( ) 0

S

h u q n d S     

Surface S  is composed by a liquid surface 
l

S  and a gas surface 
g

S  as well as ‘side’ 

surfaces of size   that tends to zero. Therefore the preceding surface integrals 

become:  

( ) ( ) 0

l g

l l i l l l l i l g g i g g g g i g

S S

Y u D Y n d S Y u D Y n d S             

            ( ) ( ) 0

l g

l l l l l g g g g g

S S

h u q n d S h u q n d S         
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Where: 

- 
l

n  and 
g

n  denote the outward unit normal vectors to the corresponding 

phases.  

- The notation I  denotes the interface.  

The system of equations thus becomes:  

( ) ( ) 0
l li l l l li l g g i g g g g i g

I

Y u D Y n Y u D Y n           
 

 

                  ( ) ( ) 0
l l l l l g g g g g

I

h u q n h u q n       
 

 

2.1 Examination of the mass jump condition at the interface 

We write the mass conservation equation for each species i. Upon summation we get,  

( ) ( ) 0
l l l i l l l i l g g g i g g g i g

i i i i

u Y D Y n u Y D Y n               

which can be simplified as,  

 0
k k k

k

u n      

or in a more convenient form as,  

0
l g

m m    

Using this last relation, the equation of mass conservation becomes for each chemical 

species i, 

0
l l i l l l i l g g i g g g i g

m Y D Y n m Y D Y n          

Considering Fick’s first law of diffusion,  

k i k k k i
J D Y     

simplifications appear, 

. . 0
l l i l i l g g i g i g

m Y J n m Y J n     

Since 1
k i

i

Y    we get  0
k i

i

Y   which asserts 0
k i

i

J  . 

So both gas and liquid phase have a molecular diffusion for each chemical species 

which in total is zero. 

It is worth to mention that the above simplified expressions are differential equations 

as gradients are present in the Fick’s law. In order to transform these ODEs to an 

algebraic system (without gradients) we introduce mass exchange coefficients: 
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 , ,k i k M k ki I k i k
J H Y Y n


   

Where:  

,k i I
Y  represents the concentration of species i of phase k at the interface, 

,k i
Y


 represents the concentration of species i of phase k far away form the interface,  

M k
H  denotes the coefficient that represents mass exchange. This coefficient will be   

expressed with the help of Sherwood number correlations as detailed later.  

The index k in the above relationship indicates the mass exchange coefficients
M k

H  

on both sides of the interface. In the present work we may assume that only one 

common exchange coefficient for the gas phase is employed. Consequently, the gas 

phase index is dropped 
M g M

H H . 

Estimation of the diffusion mass exchange coefficient   

The mass exchange coefficient between the gas phase and the interface is expressed 

from the Sherwood number definition, 

M
H d

S h
D

  

where d is a characteristic length of the problem (the drop diameter for example). 

Sherwood number correlations are deduced from Nusselt number ones. Nusselt 

number correlations are of the form,  

P r R e
c d

N u a b   

Where, 

- Parameters , ,a b c  and d  are parameters given by experiments for isolated 

drops as well as drop clouds.  

- P r is Prandtl number (with P r
P

C


  ,   the dynamic viscosity, 

P
C  the 

heat capacity factor, and  the thermal conductivity). These quantities are 

specific to each fluid. 

- R e  is the Reynolds number R e
d u




    , where u  represents the 

velocity slip  between the phases, determined on the basis of a two-phase flow 

model. Such a model consists of a system of partial differential equations 

describing the mean evolution of the two-phase mixture (for example, see 

Saurel and Le Metayer, 2001)  

There are plenty of correlations to calculate Nusselt number for instance for flows 

around drops, cylinders, plates and more sophisticated geometries. This means that all 
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of parameters , ,a b c  and d  are determined for configurations of interest regarding 

the Nusselt number. Then the same parameters are applied to the S h   correlation. The 

Sherwood number is then determined by the following formula: 

R e
c d

S h a b S c    

Where Sc  is the Schmidt number S c
D




   characteristic of a given fluid. 

The system of mass equations can be summarized as follows:   

, ,
0

l l i I l i l g g i I g i g
m Y J n m Y J n       

, ,
( )

k i k M k k i I k i k
J H Y Y n


   

M k

k

k

H d
S h

D
  

R ek k
c d

k k k k k
S h a b S c   

 

Including the constraint:   0
l g

m m       

Using the mass exchange coefficient the first equation becomes the following 

algebraic equation: 

, , , , , ,
( ) ( ) 0

l l i I l M l l i I l i g g i I g M g g i I g i
m Y H Y Y m Y H Y Y 

 
       

The quantities 
, ,

, , H , H , ,
l g M M g li g i

Y Y 
 

 are determined from the ‘average two-

phase model’ and Sherwood correlations. It thus remain 4 unknowns: 
, ,

,
l i I g i I l

Y Y m  

and 
g

m . 

Example: Consider a drop with initially only water at one side of the interface and on 

the other side of the interface air and water vapor. The initial data are:  

- At the liquid part:    
, ,

1, Y 0
l w a te r l a ir

Y       

- At the interface part:  
, , , ,

1, Y 0
l w a te r I l a ir I

Y      

- At the gas part:           
, g ,

1, Y 0
g w a te r a ir

Y    

- At the far away part:  
, , , ,

1, Y 0
l w a te r l a ir

Y
 
   

From the concentrations at the liquid part we get: 
, ,

0
l i I l i

Y Y


   so the equation for 

mass exchange can be written for water and air respectively as below: 

, , , , , ,
( ) 0

l g g w a te r I g M g g w a te r I g w a te r
m m Y H Y Y


     
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, , , , , ,

( ) 0
g g a ir I g M g g a ir I g a ir

m Y H Y Y


    

Summing these two equations, the mass conservation at the interface is satisfied, 

meaning that, 0
l g

m m  .  Therefore the preceding system can be considered as: 

                           
, , , , , ,

( ) 0
l g g w a te r I g M g g w a te r I g w a te r

m m Y H Y Y


     

                                          0
l g

m m   

Simplifying again gives the following expression: 

, , , ,

, ,

( )

1

g M g g w a te r I g w a te r

g

g w a te r I

H Y Y
m

Y








 

This equation expresses the gas mass flow rate emitted by a liquid surface under the 

sole effect of the molecular mass diffusion. Such a situation occurs when the 

temperature of the liquid and gas are in equilibrium.  

We may observe this type of situation when drying clothes in a stream of dry air 

(
, , , ,

0 , 0
g w a te r I g w a te r

Y Y


  ). In this case, 0
g

m   meaning that the gas mass 

increases while the cloth loses liquid. Conversely, if the air is humid and the cloth is 

dry then 0 .
g

m    Thereafter we consider energy aspects that will be important when 

a thermal disequilibrium is present. 

 

2.2 Examination of the interface energy jump relation 

The corresponding equation has already been determined in the above simplified 

system of equations, 

( ) ( ) 0
l l l l l g g g g g
h u q n h u q n       , 

where the heat flux is given by the sum of Fourier and energy transport by mass 

diffusion terms, 

k k k k k k i k i

i

q T D h Y       

The mixture enthalpy is defined by 
k k i k i

i

h Y h  . 

 With the help of the mass flow rate definition, it becomes:  

0
l l l l g g g g

m h q n m h q n      . 

Inserting the heat flux definition we have,  
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0
l l i l i l l l i l i l l l l g g i g i g g g i g i g g g g

i i i i

m Y h D h Y n T n m Y h D h Y n T n                   

or, 

( ) ( ) 0
l i l l i l l l i l l l l g i g g i g g g i g g g g

i i

h m Y D Y n T n h m Y D Y n T n                 

From the mass conservation at the interface for each species i : 

0
l l i l l l i l g g i g g g i g

m Y D Y n m Y D Y n          

The energy equation becomes, 

( )( ) 0
l i g i l l i l l l i l l l l g g g

i

h h m Y D Y n T n T n              

With the help of the Fourier law, 

ck k k
q T    

As done previously with mass exchange, the Fourier law is replaced by a heat 

exchange correlation. Indeed, 

 ,ck k k k k T k I k
q n T n H T T


        

Where: 

- 
T k

H  represents the heat exchange coefficient. This coefficient is expressed 

with the Nusselt number correlations. 

- 
I

T  is the interface temperature.  

- 
,k

T


 is the temperature of phase k  far away of the interface. 

The interface energy condition now becomes:  

, , , ,
( )( ( )) ( ) ( ) 0

l i g i l li l M l li I li T l I l T g I g

i

h h m Y H Y Y H T T H T T
  

         

Example: Reconsidering the previous example with a liquid made of pure water the 

term where 
M l

H  is present vanishes. The above relationship becomes:  

, , , ,
( ) ( ) ( ) 0

l w a te r g w a te r l T l I l T g I g
h h m H T T H T T

 
       

Therefore, a second expression for the mass flow rate appears: 

, ,

, ,

( ) ( )
T l I l T g I g

l

g w a te r l w a te r

H T T H T T
m

h h

 
  




 

As the evaporation process is isobaric, the enthalpy difference corresponds to the 

latent heat of vaporization: 
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, , ,
( )

g w a te r l w a te r v w a te r
h h L P   

Using the interface mass condition the gas mass flow rate reads: 

, ,

,

( ) ( )

( )

T l l I T g g I

g

v w a te r

H T T H T T
m

L P

 
  

  

This relationship can be used to determine the mass flow rate when the effects of 

concentration gradients are absent. This situation corresponds to the case of a drop of 

liquid placed in steam-only gas environment. In this case the interface mass condition  

( 0 )
l g

m m  is automatically satisfied.  

When the concentration gradients are present they must satisfy the interface condition 

for each gas species together with the interface energy condition which complicates 

the determination of the solution. Note also that the interface energy condition 

requires the knowledge of 
T l

H  and the interface temperature 
I

T . 

Limit case 1:  Let us consider a cold drop in a warm gas (steam only) environment 

(superheated steam). The temperature of the drop increases and after some time 

reaches the saturation temperature ( )
sa t

T P . At this moment the conditions are: 

,
( )

l I sa t
T T T P


  . 

The drop then continues evaporation at a rate controlled by the above relation 

eliminating the term of 
T l

H : 

,

,

( ( ))

( )

T g g sa t

g

v w a te r

H T T P
m

L P




  

Limit case 2:  Let us now consider a drop and its surrounding vapor under rapid 

pressure drop. In this expansion process the temperature within the liquid can exceed 

the interface temperature. But considering local thermodynamic equilibrium at the 

interface, its temperature is still given by:  

( )
I sa t

T T P  

In such situation, 
,l I

T T

  and we assume a uniform temperature profile inside the drop. 

In such a process, the dominant term is 
,

( )
T l l I

H T T

 . The internal energy stored in 

the liquid is responsible for its self-vaporization. This occurs for example in flashing 

and cavitating flows. 

3. Closure relations 

Let us consider the evaporation model in the special case where only two chemical 

species are present. The system to consider is made of the interface mass and energy 

jump conditions. So both relationships for gas mass flow rate have to be considered: 
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, , , ,

, ,

( )

1

g M g g w a te r I g w a te r

g

g w a te r I

H Y Y
m

Y








 

     
, ,

( ) ( )

( )

T l l I T g g I

g

v

H T T H T T
m

L P

 
  

  

This system involves 4 unknowns:
, ,

, , T ,
g g w a te r I I T l

m Y H . Indeed, the other variables 

(such as for example gas-interface exchanges correlation or the pressure P ) are given 

by appropriate correlations and flow variables of the two-phase mixture. These last 

ones are determined by averaged equations of the two-phase flow model. Such system 

corresponds to a set of partial differential equations for which the present mass 

transfer model is a sub-model. 

Heat transfer coefficient 
T l

H  inside the drop is unknown but the gas coefficient 
T g

H  

is easily determined from correlations based on the Nusselt number. This is because 

the temperature measurement within a drop is nothing easy. Moreover, the field of the 

internal flow in the droplet cannot be quantified from the information provided by the 

macroscopic two-phase model. To our knowledge, no effective correlation is available 

for the determination of this transfer coefficient. This is why conventional models in 

principle not consider heating stage of drops before reaching the saturation 

temperature. Next we address an approximate method to estimate of this heat 

exchange coefficient. A relation for the determination of the vapor water 

concentration at the interface 
, ,g w a te r I

Y  is developed as well.  

 

3.1 Determination of the liquid-interface heat exchange 

coefficient 

 
Let us consider a spherical drop as shown on the following picture:  
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Due to internal convection inside the drop, surface tension at the interface and heat 

exchange with the gas it is not possible to address internal temperature profile inside 

the drop in agreement with fundamental equations of this complex flow. We thus 

consider a temperature profile that fulfils the basic constraints which are undoubted: 

 

0

0

r

T

r






       symmetry condition, 

 
r R I

T T


         condition at the interface, 

 
1

( )
I

V

T T r d V
V

    mean temperature definition. 

The last relationship holds since the macroscopic two-phase flow model provides the 

total energy average for a given phase and consequently it’s average temperature. 

We then have three conditions that we can use to determine the algebraic form of the 

temperature field. This profile may involve three parameters. We will then choose the 

simplest profile involving only three parameters, i.e. a parabolic profile: 

2
( )T r a r b r c    

After taking the derivative 2
T

a r b
r


 


 and applying the symmetry condition 

0

0

r

T

r






 we shall get 0 .b   

The second condition at the interface reads, 
2

I
T a R c  . 

Integrating the temperature profile,  

3

0

3
( ) ²

R

l
T T r r d r

R
  , 

the following result is obtained,  

3 ²

5
l

a R
T c  . 

After integrating and eliminating the constant c  we get: 
2 ²

5
I l

a R
T T   

Therefore,  
 5

2 ²

I l
T T

a
R


 . 

The temperature profile thus reads, 
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 
2

5 3 ²
( )

2 5

I l

l

T T r a R
T r T

R

  
   

 

 

The heat flux at the interface is defined by, 

,

l

l I l r

r R

T
q u

r





 


 

Where 
l

  is  the thermal conductivity. The heat exchange coefficient is given by:  

, ,
( )

l I l T l I l
q n H T T


    

Since  
l r

n u   , we get:  
,

5 ( )
( )

I l

l T l I l

T T
H T T

R





  . 

Assuming that 
,l l

T T


  the desirable relationship is obtained: 

5
l

T l
H

R


  

This solution guarantees the energy conservation at the whole drop. It also 

corresponds to an internal Nusselt number of 10. 

 

3.2 Thermodynamic relationships at the interface  

The last step is to determine the concentration of the vapor water at the interface 

, ,g w a te r I
Y  and the interface temperature 

I
T . We aim to find an algebraic equation 

which links these two variables.  

The interface is in thermodynamic equilibrium which means:  

a)  
, ,g I l I I

T T T    (thermal equilibrium) 

b)  
, l,g I I I

P P P    (mechanical equilibrium) 

c)  
, l,g I I

     (chemical equilibrium - see Appendix A)  

These three conditions result in the partial pressure of vapor at the drop surface that it 

is equal to the saturation pressure at the outlet interface temperature:  

, w a te r ,
( )

g I sa t I
P P T  

From the Dalton law for ideal gases the total pressure of the gas mixture is equal to 

the sum of the partial pressures of individual gas species. For the vapor, 

, w a te r , , ,g I g w a te r I I
P V n R T  

The equation of state expressed at the interface for the gas mixture gives:    
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,i ,g I I

i

P V n R T   

Using the mole fraction definition i

i

i

i

n
x

n



 we get: 

, w a te r ,

, w a te r ,

( )g I sa t I

g I

P P T
x

P P
   

In order to convert the mole fractions to mass fractions we apply the following 

relation:  i i

i

i i

i

n M
Y

n M



,  

Where, 
i

M  is the molecular mass of species i. Moreover the mixture molar mass is 

defined by:   ˆ

i i

i

i

i

n M

M
n






. 

With this definition since ˆ
i i i

i i

M n n M   we obtain: 
ˆ

i

i i

M
Y x

M
  

Which leads to the following formula, 
( )

ˆ

i s a t I

i

M P T
Y

M P
 . 

Substitution of the expression for 
, w a te r ,g I

x  gives, 

, w a te r ,

( )

ˆ

w a te r sa t I

g I

M P T
Y

M P
  

 

3.3 System of governing equations  

Two chemical species  

The relationships that govern the evaporation rate when only two chemical species are 

present (water and air for example) are the following:  

,w a te r , ,w a te r ,

,w a te r ,

( )

1

g M g g I g

g

g I

H Y Y
m

Y








                                             (A) 

  
, ,

,w a te r

( ) ( )

( )

T l l I T g g I

g

v

H T T H T T
m

L P

 
  

                       (B) 
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, w a te r

, w a te r ,

( )

ˆ

sa t Iw a te r

g I

P TM
Y

M P
                         (C) 

Since the heat exchange coefficient 
T l

H was previously determined and the relation 

, w a te r
( )

s a t I
P T  is provided by the phase diagram of the fluid in consideration, this 

system comprises only 3 unknowns: 
, w a te r ,

,
g g I

m Y and 
I

T . The mass fraction of the air 

which is also involved in the calculation of the gas mixture molar mass is obtained 

from: 

, w a te r , ,a ir ,
1

g I g I
Y Y  . 

This system however is a highly nonlinear and specific solution procedure need to be  

implemented. As an initial option the following procedure is proposed: 

 

i) Start from an initial estimate of the interface temperature 
I

T  for 0
g

m  . 

Then from equation (B): 
, ,T l l T g g

I

T l T g

H T H T
T

H H

 





 

ii) Calculate 
, w a te r ,g I

Y  from (C) (must always lie inside the interval of   0 ,1  

iii) Calculate 
g

m  from (A)  

iv) Calculate the new 
I

T from (B): 
, , , w a te r

( )
T l l T g g g v

I

T l T g

H T H T m L P
T

H H

 
 




 

 

Steps ii)-iv) are repeated until two values of 
I

T  merge. This procedure will work 

when the initial estimate is close to the desired value, ie at very low flow rates. In 

highly dynamic conditions and in the presence of large differences in concentration 

and temperature an algorithm of Newton type will be required. 

Limit case – Water drop in its vapor 

When the gas contains only vapor, we have: 
, w a te r , , w a te r ,

1
g I g

Y Y


   and relation (A) 

is inappropriate.  

For 
, w a te r

( )
sa t I

P P T  or if ( )
I sa t

T T P  in (C) we get obviously: 
, ,

1
g w a te r I

Y    

The mass flow is thus obtained directly from the energy balance (B). The heating step 

of the drop is nevertheless taken into account. Assuming further that the temperature 

of the drop is uniform, so that heating is no longer possible 
l,

( )
I

T T

  the flow rate 

is obtained by: 
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, ,w a te r

,w a te r

( ( ))

( )

T g g sa t

g

v

H T T P
m

L P




  

 

Generalization of the model 

The model can be generalized to the case where the system involves more than two 

species. A typical example is those of liquid fuel drop initially placed in the air. The 

evaporation produces a mixture of two species, air and liquid vapor. Then, if 

combustion occurs a third component appears. This third component may be itself 

multi-constituent, with some species possibly already present  

in the air. In these cases all changes of these components need consideration. 

Two cases are to be considered:  

- The combustion product gas mixture is composed solely of new chemical species. 

This depends on the combustion chemical reaction. In this case, this gas mixture can 

be treated as a third chemical species.  

- Otherwise, some of the chemical species of combustion products are already  

present. In that instance all species concentration need determination and the system 

is obviously complicated. 

The following thermodynamic relationship determines the concentration of the gas 

species at the evaporating side of the interface: 

,

, ,

( )

ˆ

sa t e v Ie v

g e v I

P TM
Y

M P
  

Where the index ‘ev’ stands for evaporating species. The mass balance of the various 

species read, 

, , , , , , , ,
( ) 0

l l i I g g i I g M g g i I g i
m Y m Y H Y Y


       i  

The effects of molecular diffusion in the liquid phase have been omitted.  

In the particular case where the liquid consists of a single species: 

, ,
1

l e v I
Y   and 

, ,
0

l i I
Y i e v   . 

The above balance equation can be written as, 

, , , , , ,
( ) 0

l g g e v I g M g g ev I g e v
m m Y H Y Y


    , 

     
, , , , , ,

( ) 0
g g i I g M g g i I g i

m Y H Y Y


    i e v  . 

The first of these equations provides the mass flow rate: 

, , , ,

, ,

( )

1

g M g g ev I g ev

g

g ev I

H Y Y
m

Y








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The other equations provide the concentrations of the other constituents at the 

interface: 

, ,

, ,

g M g g i

g i I

g g M g

H Y
Y

m H










 i ev   

In the case where the liquid is constituted of only the evaporating species the 

condition of interface energy is unchanged compared to the preceding case. It is used 

for the calculation of 
I

T : 

, , ,
( )

T l l T g g g v ev

I

T l T g

H T H T m L P
T

H H

 
 




 

This system involves N species, one of them corresponding to the evaporating species 

and N + 2 unknowns, the two additional unknowns being 
g

m  and 
I

T . The system 

above contains N+1 equation.  The last equation is provided by, 

,

, ,

( )

ˆ

s a t w a te r Iw a te r

g w a te r I

P TM
Y

M P
 . 

The next step consists of the introduction of this submodel in the macroscopic 

multiphase flow one. This step is the subject of the next section (or forthcoming 

work). 

 

Numerical method for solving the sub-model  

As soon as the physical modelling is completed we have defined the system of the 

governing equations we must proceed to the numerics. The target is to develop an 

efficient, robust and reliable algorithm for the solution of the algebraic equations. Our 

strategy is to combine the equations to find a nonlinear function of a single variable to 

be solved. Physical constraints that should be satisfied are also used to test and 

specify the best numerical method as far the three factors mentioned above. First we 

apply some computations to transform mathematical relations to a more convenient 

form:  

Since right hand sides of relations (A), (B) so these can be written as: 

T l l , I T g g , I g M g g , e a u , I g , e a u ,

v , e a u I g , e a u , I

H (T T ) H (T T ) H ( Y Y )

L (T ) 1 Y

  
    




 

 We get the relation of temperature as a function of mass fraction,  

T l l , T g g , g M g g , w a te r , I g , w a te r ,v , w a te r I

I g , w a te r , I

T l T g T l T g g , w a te r , I

H T H T H ( Y Y )L (T )
T ( Y )

H H H H 1 Y

  
   

  
   
 

 

From relation (C) solving for pressure gives,  
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s a t , w a te r I g , w a te r , I

w a te r

M̂
P (T ) P Y

M
  

Combing these last two we get, 

T l l , T g g , g M g g , w a te r , I g , w a te r ,v , w a te r I

sa t I g , w a te r , I sa t

T l T g T l T g g , w a te r , I

H T H T H (Y Y )L (T )
P (T (Y )) P

H H H H 1 Y

  
     

   
      

  

Now since,  
s a t , w a te r I g , w a te r , I

w a te r

M̂
P (T ) P Y

M
   we get, 

T l l , T g g , g M g g , w a te r , I g , w a te r , g , w a te r , Iv , w a te r I

g , w a te r , I sa t g , w a te r , I

T l T g T l T g g , w a te r , I w a te r

ˆH T H T H (Y Y ) M (Y )L (T )
f (Y ) P P Y 0

H H H H 1 Y M

  
     

     
      

 

For a given temperature
I

T , function f depends only on mass fraction 
g , w a te r , I

Y .This 

equation is supplemented with both mass fraction and temperature constraints. This 

means f is valid only for certain values of these variables. These bounds must be 

primary determined.  

So, the equations to zero are, 

T l l , T g g , g M g g , w a te r , I g , w a te r ,v , w a te r I

I g , w a te r , I

T l T g T l T g g , w a te r , I

H T H T H ( Y Y )L (T )
T ( Y )

H H H H 1 Y

  
   

  
   
 

 

Or more explicit, 

T l l , T g g , g M g g , w a te r , I g , w a te r ,v , w a te r I

I

T l T g T l T g g , w a te r , I

H T H T H ( Y Y )L (T )
T 0

H H H H 1 Y

  
   

   
   
 

 

And, 

T l l , T g g , g M g g , w a te r , I g , w a te r , g , w a te r , Iv , w a te r I

g , w a te r , I sa t g , w a te r , I

T l T g T l T g g , w a te r , I w a te r

ˆH T H T H (Y Y ) M (Y )L (T )
f (Y ) P P Y 0

H H H H 1 Y M

  
     

     
      

 

for a given range of
g , w a te r , I

Y  and 
I

T . 

The method initially assumes an arbitrary value for 
v , w a te r

L  which corresponds to an 

initial guess for temperature. Thus, 

T l l , T g g , g M g g , w a te r , I g , w a te r ,v , w a te r

I g , w a te r , I

T l T g T l T g g , w a te r , I

H T H T H ( Y Y )L
T ( Y )

H H H H 1 Y

  
   

  
   
 
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We now have to determine the existence bounds for 
g , w a te r , I

Y . We denote this initial 

guess for 
I

T  (which may varies with the actual temperature) with *
T  to distinguish it 

from the same expression than uses the exact latent heat, 

T l l , T g g , g M g g , w a te r , I g , w a te r ,v , w a te r*

T l T g T l T g g , w a te r , I

H T H T H ( Y Y )L
T

H H H H 1 Y

  
   

  
   
 

 

*
T  will have a range of values from a minimum value 

lo w
T 0 K (since negative 

temperature is not acceptable for saturation pressure calculation) to a 

maximum
u p c rit

T T  the fluid critical temperature which is also used as a physical 

constraint. 

Thus, 

T l l , T g g , *

T l T g

g , w a te r ,

g M g v , w a te r

T l T g

g , w a te r , I

T l l , T g g , *

T l T g

g M g v , w a te r

T l T g

H T H T
T

H H
Y

H L

H H
Y

H T H T
T

H H
1

H L

H H

 



 

 
 


 

 

 


 


 
 


 

 

 


 

 

Therefore, setting 
lo w

T 0 K  the lower fraction bound is:  

T l l , T g g ,

g , w a te r ,

g M g v , w a te r

g , w a te r , I , lo w

T l l , T g g ,

g M g v , w a te r

H T H T
Y

H L
Y

H T H T
1

H L

 



 

 
  
 
 


 

  
 
 

 

This bound is obviously positive. 

The upper bound is, 
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T l l , T g g ,

u p

T l T g

g , w a te r ,

g M g v , w a te r

T l T g

g , w a te r , I , u p

T l l , T g g ,

u p

T l T g

g M g v , w a te r

T l T g

H T H T
T

H H
Y

H L

H H
Y

H T H T
T

H H
1

H L

H H

 



 

 
 


 

 

 


 


 
 


 

 

 


 

 

This bound has to be less than 1. This is not obvious as for the moment, 
u p

T  is more 

or less arbitrary.  

Therefore, in order that temperature 
I

T  stays positive, 
g , w a te r , I

Y  must belong to the 

interval:  

g , w a te r , I , lo w g , w a te r , I g , w a te r , I , u p
Y Y Y   

The precise value of 
g , w a te r , I

Y  is then determined by solving, 

T l l , T g g , g M g g , w a te r , I g , w a te r , g , w a te r , Iv , w a te r I

g , w a te r , I sa t g , w a te r , I

T l T g T l T g g , w a te r , I w a te r

ˆH T H T H (Y Y ) M (Y )L (T )
f (Y ) P P Y 0

H H H H 1 Y M

  
     

     
      

 

When 
g , w a te r , I

Y  is determined, 
I

T is computed by,  

 
T l l , T g g , g M g g , w a te r , I g , w a te r ,v , w a te r*

I g , w a te r , I

T l T g T l T g g , w a te r , I

H T H T H ( Y Y )L
T T Y

H H H H 1 Y

  
   

   
   
 

 

This (new) 
I

T is used to compute 
v , w a te r I

L (T )  that is used for the next time step in the 

same computational cell. Latent heat is an important factor that can effect 

computations and is updated at every new temperature.  

The steps for the solution of the sub-model:   

1. Define minimum and maximum temperature  

2. Define desired accuracy of solution 

3. Make an initial guess for 
*

v , w a te r I
L (T ) for an initial 

*

I
T  

4. Fix the initial bounds for 
g w I

Y  
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5. Determine *

g w I
Y so that 

g w I
f ( Y ) 0  (or 

g w I
f ( Y ) 1P a ). This can be done by 

dichotomy for example. 

6. Compute the new temperature n ew *

I g w I
T T ( Y )  

7. Check if  the difference n ew *
T T is smaller than the desired accuracy  

8. Update 
n ew

v , w a te r I
L (T )  for the new temperature and go to 4. 

9. Find the new bounds for 
g w I

Y  

10. If temperature convergences then verify that initial expressions (A),(B),(C) are 

reasonable   

  

Solving the non-linear equation  

The last task we have to work on is choosing an appropriate method for solving the 

non- linear equation 
g w I

f ( Y ) 0  numerically. Starting from some approximate trial 

solution, an algorithm will improve the solution until the desired convergence 

criterion is satisfied. Zero finding depends on a good first guess. However it is not the 

only thing that can affect the solution. An insight analysis of the problem is required 

to apply or modify a method so that it successfully solves the problem taking in 

concern all the necessary constraints. 

We are always looking to bracket the root by the sign changes of the function. That is 

the reason that the range of function 
g w I

f (Y )  is always updated. Solution must be 

inside this range and a good algorithm should not get outside of this bounds. 

The equations we want to solve are approximately like this:  
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                          Figure 1. Equation 
g w I

f (Y ) for constant latent heat, 
6

v
L 2 1 0 J / k g   

 

               Figure 2.  Function 
g w I

T ( Y )  for constant latent heat, 
6

v
L 2 1 0 J / k g   
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Dichotomy method 

In this method, evaluation of the function is made inside a sub-interval of the bracket 

that we fix at every iteration. This sub-interval is divided by two at every sign change. 

This method is successfully applied with a small number of iteration (less than ten). 

Let 
n n

a , b be the endpoints at the n-th iteration (with 
m in

1 g w I
a Y and 

m ax

1 g w I
b Y ) and let 

n
r be 

the n-th approximate solution. Then 
n

r is defined by  n n n

1
r a b

2
   and the interval now 

has length equal to 
n n n 1

b a
b a

2



  . 

 Secant (False position) method  

Again the method is applied at the bracket we fix in order for the function 
g w I

f (Y )  to 

be valid. If solution is bracketed between 
n

a  and 
n

b  at the n-th iteration, then the new 

root estimate 
n

r  is, 

n n n n

n

n n

b f (a ) a f(b )
r

f (a ) f (b )





 

 

This method is faster than dichotomy but convergences to solution that lies close 

to
m in

T . 

Chord method 

This method does not differ from the previous in only exception: that keeps the most 

recent of the prior estimates and as in Secant (False Position) method, the function is 

assumed to be linear close to the solution, so the slope between to estimate points is 

given by, 

n 1 n 2

n 1

n 1 n 2

f (x ) f (x )
f (x )

x x

 



 


 


 

So the new root guess is,  

n 1 n 1 n 2

n n 1

n 1 n 2

f (x )(x x )
x x

f (x ) f (x )

  



 


 


 

The root does not necessarily remains bracketed or the solution can be slow because 

of the function’s local behaviour. This issue also occurs at Newton’s method (where 

again the solution lies close to
m in

T ). 

Ridders’ method 

It is a slightly different from the two others. The root is bracketed between two values 

and evaluation is done at their midpoint. The new idea here is that it uses an 
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exponential function which turns the residual function into a straight line [4], giving a 

new guess for the root. It can be superlinear and gives successfully a root. One can 

use different accuracy levels for the two equations. If the root is bracketed inside two 

points 
1

x and 
2

x  and 
3 1 2

1
x ( x x )

2
  is their midpoint, then the new root guess is, 

 1 2 3

4 3 3 1
2

3 1 2

s ig n f(x ) f (x ) f (x )
x x (x x )

f (x ) f (x ) f (x )


  



 

 

Newton-Raphson Method  

Newton’s method is faster but evaluates the function 
g w I

f (Y )  and its derivative.  

The root estimate is provided by, 

n

n 1 n

n

f (x )
x x

f (x )


 


 

Newton’s formula uses the 1st order derivative which is computed numerically: 

f (Y d Y ) f (Y )
f (Y )

d Y

 
   

Solution can go out of the brackets especially near a horizontal asymptote. 

Newton and Dichotomy method [4] 

This method takes a bisection whenever Newton iterations would take the solution out 

of bounds of whenever the size of brackets is not reducing rapidly enough.  

Brent method 

 

On each iteration Brent's method approximates the function using an interpolating 

curve. On the first iteration this is a linear interpolation of the two endpoints. For 

subsequent iterations the algorithm uses an inverse quadratic fit to the last three 

points, for higher accuracy. The intercept of the interpolating curve with the x-axis is 

taken as a guess for the root. If it lies within the bounds of the current interval then the 

interpolating point is accepted, and used to generate a smaller interval. If the 

interpolating point is not accepted then the algorithm falls back to an ordinary 

bisection step. The best estimate of the root is taken from the most recent 

interpolation or bisection. 

2

P
x x

Q
    

Where, 

 3 2 2 1
P S T ( R T )( x x ) (1 R )( x x )       

Q (T 1)(R 1)(S 1)     and 2 2 1

3 1 3

f ( x ) f ( x ) f ( x )
R , S , T

f ( x ) f ( x ) f ( x )
   . 

 

The following table summarizes the each method’s performance for one simple call, 
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 Dichotomy Secant Chord  Ridders Newton 
Newton& 

Dichotomy 
Brent  

Iterations 7 3 3 6 3 5 5 

Run time 

(sec)* 
0.004 0.003 0.003 0.002 0.003 0.002 0.002 

Accuracy 1.d-06 1.d-06 1.d-06 1.d-08 1.d06 1.d-06 1.d-6 

Solution Yes No No Yes No Yes Yes  

 

For 1,000,000 calls  

 Dichotomy Secant Chord  Ridders Newton 
Newton& 

Dichotomy 
Brent  

Iterations 7 3 3 6 3 5 5 

Run 

time* 
1m58.6s 0m8.470s  0.8470s 1m33.833s 0m18.004s 3m17.780s 1m13.001s 

Accuracy 1.d-06 1.d-06 1.d-06 1.d-08 1.d06 1.d-06 1.d-6 

Solution Yes No No Yes No Yes Yes  

 

*Time estimation for an Intel (R) Celeron (R) CPU B815 @ 1.60GHz processor.  

The reason that Secant (False Position), Chord  and Newton-Raphson methods give 

different solution from the other methods and fail to give a solution that confirms 

initial equations for a temperature far away from 
m in

T , is the way temperature 

criterion is determined: root search stops is the difference n ew o ld
T T  is smaller than 

the desired accuracy. This is why Ridders’ method that uses different accuracy levels 

successes.   
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Figure 3. CPU time for 
6

1 0  calls for different mass fractions. 

 

Figure 4. CPU time for 
6

1 0  calls for different temperatures. 
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3.4 Coupling with the Two-Phase model   

   To illustrate the method we coupled it with a two phase model [5]. The model 

allows two phases for multicomponent fluids and performs a relaxation of pressure. 

At the test case that follows there is a shock tube where in the first domain there is air 

with volume fraction 0.9 that contains air and vapor water (mass fraction is equal to 

0.2) and pure water with volume fraction 0.10. The left part of the computational 

domain (high-pressure area) has pressure equal to 100bar and the right domain has 

1bar (low-pressure area). Both domains have temperatures equal to 300K. 

  

 

Figure 5. Mass flow rate in the shock tube through time evolution. In the shock wave region 

the amount of liquid that evaporates increases. 
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Figure 6. Mass fraction of gas phase in the shock tube through time evolution. It increases at 

the shock wave area. 

 

Figure 7. Mass fraction of liquid phase in the shock tube through time evolution. It decreases 

at the shock wave area. 
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Figure 8a)  Density of gas phase in the shock tube                           Figure 8b)  Density of liquid phase in the shock tube through               

through time evolution.                                                                     time evolution.   

 

 

Figure 9a)  Volume fraction of gas phase in the                                  Figure 9a) Volume fraction of gas phase in the shock tube 

shock tube  through time evolution.                                                     through time evolution. 

 

 

Figure 10. Velocities of both gas and liquid phases inside the tube, through time evolution. 
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Figure 11. Temperatures of both gas and liquid phases inside the tube, through time evolution. 

 

   Initially we assume thermodynamic equilibrium and the vapor pressure is equal to 

its saturated value. The shock increases vapor pressure that leads to condensation. The 

drag force at the drops inside the gas phase causes a heat transfer from the gas to the 

drops. The latent heat that is released increases the temperature inside the drops. 

When the vapor pressure becomes smaller than the saturated vapor pressure, the drops 

start to evaporate causing the radius of the drops to change (fig. 12). In this case the 

heat transfer occurs from the drops to the gas. The rate that temperature changes, 

decreases. If the temperature in the high and low domain are initially the same, there 

will not be a uniform temperature between the shock wave and the expansion wave.  

   The mass flow rate is greater than zero and smaller at the high pressure domain 

where the expansion wave travels, but increases significantly in the area of the shock 

wave in the low pressure region. The expansion wave that travels in the left domain 

changes weaker the phase velocity, density and pressure whereas the shock wave 

more effectively them as expected. The reason that these changes do not occur with 

the same rate in the two phases is due to the difference in the compressibility of the 

fluids. Moreover at the left domain, water is forced to increase the pressure and 

decreases its volume fraction leading to an increase at air’s volume fraction (fig. 9a-

9b). The exact opposite effects hold on the left domain. 
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Figure 12. Radius of a single drop in the shock tube through time evolution for uniform 

temperature at 300K. 

 

 

Appendix A – Chemical equilibrium 

Each chemical reaction involves reactants and products. In chemical equilibrium the 

concentrations on both sides of the reaction are time invariant.  

Introducing the chemical potential   as the partial molar free energy of a chemical 

species of a mixture with n  species each one having 
i

N  moles we have:  

1

n

i i

i

d G S d T V d p d N



      

At thermal and mechanical equilibrium it reduces to: 

1

n

i i

i

d G d N



   

Then each of the 
i

  of species i  can be explicitly defined as, 

i

i

G

N


 
  

 

 

At chemical equilibrium, the system Gibbs free energy reaches its minimum. It 

means, 



-32- 

0dG    

Which by the above definition gives, 

 
1

0

n

i i

i

d N



  

Considering a liquid vapor phase change situation, 

0
l l g g
d N d N    

Mass conservation implies, 

0
l g

d N d N  , 

as the liquid and gas molar masses are equal. 

Therefore, 

  0
l g l

dN    

As around equilibrium
l

d N is small but non zero, the chemical equilibrium condition 

is now written as, 

l g
   

Appendix B – Equation of state 

 

Stiffened Gas Equation of state (EOS) 

The equation of state and the calculation of the conventional properties of the phase 

diagram and useful fluid quantities are described below. Stiffened gas which is 

applied (SG EOS) can be written as a pressure law:    

*
( , ) ( 1) (e e )p e p   


     

Where 
*

, e and p


 are parameters related to the fluid. Here 
*

e  defines the zero point 

for the internal energy and becomes relevant when phase transitions are involved. The 

parameter p


 leads to the stiffed properties compared to ideal gases meaning that 

large values of p


 implies an almost incompressible behavior of fluid.  

Calculation of flow properties:  

e (p , )
1

p p
q


 






 


                                                                 (1) 

( 1) C
(p , T )

T

p p













                                                                     (2) 
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( )h T C T q


                                                                                (3) 

'
( , ) ( C ) C lo g

(p p )( 1)

T
g p T q T T q



 





   
 

          (4) 

 

where e is the specific internal energy, h  is the enthalpy, p  the pressure, 1 /   

the specific volume,   is the temperature, g  the Gibbs free energy and 

'
, , , q , qp C





are specific fluid constant.  

A method to determine the above quantities in two phase systems is given in Le 

Metayer et al. (2004). The coupling of gas and liquid parameters is particularly 

examined. 

Computation method 

The parameters involved in the SG EOS are determined from experimental curves for 

each fluid. In the case of liquid evaporation saturation curves are considered:  

,e x p g ,e x p ,e x p g ,e x p
( ) , h ( ) , h ( ) , ( ) , ( )

sa t l l
p p T T T T T   

and the latent heat of evaporation 
,e x p g ,e x p l,e x p

L (T ) h ( ) h ( )
v

T T    

 From equation of enthalpy (c) we have:   

, k p , k

d h
C C

k

k

d T


     for each k=l,g 

 

Heat capacity factors 
p ,k

C  can be determined by a linear interpolation between two 

reference states 0 and 1 as: 

k ,ex p 1 k ,ex p 0

p ,k

1 0

h ( ) h ( )
C

T T

T T





         for each k=l,g 

Reference energies are now expressed as:  

k ,e x p 0 , 0
q h ( ) C

k p k
T T       for each k=l,g 

 With the saturation pressure curve ( )
sa t

p p T  the specific volume is:  

, ,

k

,

(C C )
( )

(p ( ) )

p k k

sa t k

T
T p






 



     for each k=l,g                                           (5) 

 

The relation may be written with logarithms as: 

k ,
lo g ( ( )) d lo g (T ) lo g ( ( ) )

sa t k
d T d p T p


        ,   for each k =l,g 
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Integration between the two reference states 0 and 1 yields:  

k 1 k 0 1 0 1 , 0 ,
lo g ( ( )) lo g ( ( )) lo g (T ) ln (T ) lo g ( ( ) p ) lo g ( ( ) p )

sa t k sa t k
T T p T p T 

 
      

 

Solving for 
,

p
k

 we get:  

k 0 1 0 k 1 0 1

,

k 1 0 k 0 1

( ) (T ) ( ) (T )
p

( ) ( )

s a t s a t

k

T T p T T p

T T T T

 

 






          ,k l g       

                

 Equation (5) applied to the reference state 0 provides the approximation of the 

heat capacity factor 
,

C
k

: 

0

, p ,

0 0 ,

(T )
C C

( ( ) )

k

k k

s a t k
T p T p







 


          ,k l g   

                            

     Constant 
k

  now is:   

p ,

,

C

C

k

k

k

            ,k l g   

        

 At thermodynamic equilibrium the two Gibbs free energies have to be equal 

g l
g g . This implies:  

, , l
lo g ( ) lo g ( ) lo g ( )

B
p p A C T D p p

T
 

                              (6) 

Where constants , ,A B C and D  that depend on the SG EOS parameters with the 

following correlations:  

, ,g ,g p , l

,g ,g ,g ,g ,g ,g

, B , C
p l p g l l g p

p p p

C C q q q q C C
A

C C C C C C
  

    
 

  
  

and 

, l , l

,g ,g

.
p

p

C C
D

C C









 

Relationship  (6) is non-linear  but permits the computation of the theoretical curve 

( )
sa t

p p T . Entropy constants ( )q
  are also needed for each phase. To do this we 

consider that 0
l

q 
  and choose a 

g
q
  to fit properly with the experiments curves. 
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Mixture SG EOS 

For a mixture containing 2 species with mass and volume fractions 
1 2 1 2
, , ,Y Y     

respectively the internal energy is defined as: 

1 1 1 2 2 2
e e e       

By using the SG EOS (1) each product 
k k
e  can be written as:  

,

1

k k k

k k k k

k

p p
e q


 






 


 

 

The pressure of the mixture is now expressed with:  

1 1 ,1 2 2 ,2

1 1 2 2

1 2

1 2 1 2

1 2

1 2

( ) ( )
1 1

( , , , , , )

1 1

p p
e q q

p e

   


 
  

 

 

 
     

 
  


 
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