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Abstract

The aim of this paper is to examine and model the mechanisms that are responsible
for evaporation of a drop in a multi-component gaseous environment, in the
simultaneous presence of temperature and mass concentration gradients. Phase change
of a liquid to vapor may occur following three main mechanisms:

- Evaporation by external heat supply from the gas. Heat release occurs through
the liquid /gas interface.

- The evaporation or drying by concentration gradients. The simplest example is
that a piece of cloth placed in a stream of dry air.

- Evaporation of a liquid by decompression. This phenomenon is the one that
occurs in cavitating and ‘flashing’ flows. In this context, no external energy
supply is required. The energy necessary to the phase change is already
contained in the liquid phase, in the form of internal energy.

Vapor condensation is the symmetrical process compared to the first two ones and can

thus be treated in the same manner. Therefore we focus on the following mass transfer

based on diffusive mechanisms: Heat diffusion and molecular diffusion at the
interface. In the proposed approach, we make a significant change compared to
models found in the literature:
- The mechanisms of evaporation due to temperature and concentration
gradients are considered simultaneously.
- Unlike conventional models that assume drops at saturation temperature, a
heating delay is considered.

In order to have an efficient phase change sub-model for multiphase non-equilibrium

codes, the subscale model must form and algebraic system and not a differential one.

In particular, space numerical resolution must be absent.
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1. Basic local equations inside each phase

We consider the presence of a pure gas and a pure liquid on both sides of the
interface. Across the interface exchanges of mass, momentum and energy occur. The
notation for each phase k are the following: 1 for the liquid phase and g for the gas



phase. The equations of conservation of mass of each chemical species i in the phase k
are:

op Y, -
m"' V-(p Y, -pDVY;)=0

ot

Where,

p, represents the density of phase k which may consist of different chemical species
in the mixture,

Y,, represents the mass fraction of each chemical species i at the phase k,
u . denotes the velocity vector of phase k,
D, is the mass diffusion coefficient of each chemical species i in the phase k.

In the description given by the above equation, each phase k represents an ideal multi-
component mixture. All components are in the same physical state (liquid or gas) and
the mixing is at molecular scale. Consequently, all species i have the same
temperature which is that of the phase k.

All chemical species at each phase k are assumed to have the same mass diffusion
coefficient, which meansthat, D,, = D, = D

kj k ©

The equations of conservation of energy of the phase k are:

op E - - - -
Py “+V - (p,EuU, +pUu +q)=7:VuU

ot

k

Where:

1 - -
E, represents the total energy of phase k which is defined by E, =e + —u,.u,,in
2
which,

e, represents the internal energy of phase k,

k

q . denotes the heat flux that diffuses at phase k,
Energy production by viscous dissipation is neglected. It means that:z, : v Jk =0.

dp,
dt
assumption is realistic since an evaporation front spreads in general at very low speed
and the diffusion speed for both heat and mass is quite small (less than mm/s). At both
sides of the evaporation front and through it significantly fast acoustic wave
propagates (with speed of the order of 1000 m/s). The speed of these waves has the
effect to almost instantly equilibrate the pressures that would appear through the

The flow is assumed to be isobaric (constant pressure through time: =0). This



evaporation front. Considered the flow as isobaric is a commonly used assumption in
combustion theory. This approximation allows avoiding consideration of the
equations of motion of each phase. Thus no momentum equation is considered.

Writing the above two equations in the coordinate reference system of the interface
(which moves at the speed o ) we will obtain the same system of equations as these
equations are Galilean invariant. The only modification appears in the velocity
definition that is expressed in the reference frame of the interface. Using the total

enthalpy definition h, = E, + P and substituting in the previous equation we get
Py

the following system of governing equations:

op Y. - -

h"'v (P YU, -, DVY,)=0
ot

op E - - -
pﬁktk—‘_v.(pkhkﬁk"'qk)zo

Where ﬁk =u, —o.
Hereafter the notation . > will be omitted.

2. Interface jump conditions

We consider the case where a drop of pure liquid is evaporating into air. There are
two phases k which are considered and two chemical species: water and air.

Initial conditions

Inside the drop: Y =1 and Y, =0

I, water l,air

Outside the drop: Y =0 and Y =1

g.,water g.air

Through time evolution the concentration of gas varies (Y, ... =0 and Y 1)

ater g,air

but the concentrations in the liquid phase remain invariant.

Consider a finite volume at the interface of the drop as shown in the picture below:



Interface

Liquid Gas

\

The above equations are integrated in the volume control. As the interface is a
discontinuity and the equations are expressed in the front frame of reference, time
derivatives of System are dropped.

At each point M (x, y, z) of the volume control, the flow variables have their own
value and in particular these variables are discontinuous through the interface except
for the pressure that is assumed constant, at least at leading order:

[v (pY,u - pDVY )V =0
\%

[v (phu +q)dV =0

Vv

Using Gauss theorem they become:

[(pYu - pDVY)-nds =0

S

J(phJ+&).ﬁds -0

S

Surface S is composed by a liquid surface s, and a gas surface s as well as ‘side’

surfaces of size ¢ that tends to zero. Therefore the preceding surface integrals
become:

[GoYu, = pDVY,)-ndS + [(p,Yu, —p D VY ) ndS=0
S

g gt g

I s 9

g 9 49

j(p,h,u,+q,).ﬁ,ds + [ (p,hyu +4q,)-n,ds =0
S

| S



Where:

- , and n , denote the outward unit normal vectors to the corresponding

phases.
- The notation | denotes the interface.

The system of equations thus becomes:

[(pYu, =D VY)n +(pY,u —p D VY)n | =0

9 gi"g |
|:(p|h|u| +4q,)-n +(phu, + qg)'ng]I =0
2.1 Examination of the mass jump condition at the interface

We write the mass conservation equation for each species i. Upon summation we get,
(plulz Y, - pIDIZ VY.)-n + (pgugz Y- pngZ VY, -n, =0

which can be simplified as,

or in a more convenient form as,

Using this last relation, the equation of mass conservation becomes for each chemical
species i,
mY, -, DVY, -n+myY, —pDVY -n =0

]

Considering Fick’s first law of diffusion,

J,=-pDVY,

ki

simplifications appear,

mY, +Jd,n+myY +J n =0
i i g gi gl 9

Since > Y, =1 weget VY Y, =0 whichasserts > J, . =0.

So both gas and liquid phase have a molecular diffusion for each chemical species
which in total is zero.

It is worth to mention that the above simplified expressions are differential equations
as gradients are present in the Fick’s law. In order to transform these ODEs to an
algebraic system (without gradients) we introduce mass exchange coefficients:



Where:

Y,,, represents the concentration of species i of phase k at the interface,

Y,. . represents the concentration of species i of phase k far away form the interface,

ki,

H,, denotes the coefficient that represents mass exchange. This coefficient will be
expressed with the help of Sherwood number correlations as detailed later.

The index k in the above relationship indicates the mass exchange coefficientsH
on both sides of the interface. In the present work we may assume that only one
common exchange coefficient for the gas phase is employed. Consequently, the gas
phase index is dropped H , = H

-
Estimation of the diffusion mass exchange coefficient

The mass exchange coefficient between the gas phase and the interface is expressed
from the Sherwood number definition,

H d
Sh = —*
D

where d is a characteristic length of the problem (the drop diameter for example).
Sherwood number correlations are deduced from Nusselt number ones. Nusselt
number correlations are of the form,

Nu=a+bPr'RrRe’
Where,

- Parameters a,b,c and d are parameters given by experiments for isolated
drops as well as drop clouds.

. . C . .
- Pris Prandtl number (with Pr = . , u the dynamic viscosity, C, the
A

heat capacity factor, and A the thermal conductivity). These quantities are
specific to each fluid.

pdAu

- Re is the Reynolds number Re = , Where Au represents the

7]
velocity slip between the phases, determined on the basis of a two-phase flow
model. Such a model consists of a system of partial differential equations
describing the mean evolution of the two-phase mixture (for example, see
Saurel and Le Metayer, 2001)

There are plenty of correlations to calculate Nusselt number for instance for flows
around drops, cylinders, plates and more sophisticated geometries. This means that all



of parameters a,b,c and d are determined for configurations of interest regarding

the Nusselt number. Then the same parameters are applied to the Sh correlation. The
Sherwood number is then determined by the following formula:

Sh=a+bSc°Re’

Where Sc is the Schmidt number S¢ = —— characteristic of a given fluid.
pD
The system of mass equations can be summarized as follows:

mY,  +J,n+mY +J_-n =0
i, i g gi,l gi o]

w
=
Il

Ck dy
a,+b,Sc,“Re,

Including the constraint: m +m_ =0

Using the mass exchange coefficient the first equation becomes the following
algebraic equation:

mY, +pH, (Y

i g Yli‘oc) + nggi,I + ng Mg (Ygi,l - Ygi,oo) =0

The quantities p,,p ,H, H .Y, .Y, . are determined from the ‘average two-

Mg’ "li,o ! " gi,o

phase model’ and Sherwood correlations. It thus remain 4 unknowns: Y, Y .m

T T LA

and rﬁg_

Example: Consider a drop with initially only water at one side of the interface and on
the other side of the interface air and water vapor. The initial data are:

- Attheliquidpart: v, . =1Y =0
- Attheinterface part: v, .., =1Y . =0
- Atthe gas part: Yo waer 2L Y 0 2 0
- Atthe farawaypart: v, . =1Y . =0

From the concentrations at the liquid part we get: Y., - Y, =0 so the equation for

mass exchange can be written for water and air respectively as below:

mI + ngg,water,I + ng Mg (Yg,water,l - Yg,water,oc) = 0



mng,air,I + ng Mg (Yg,air,l - Yg,air,oc) = O

Summing these two equations, the mass conservation at the interface is satisfied,
meaning that, m, + m , = 0. Therefore the preceding system can be considered as:

mI + ngg,water,I + 'DgH Mg (Yg,water,l - g,water,oc) = 0

Simplifying again gives the following expression:

pg H Mg (Yg,water,l - Yg,water,ac)

1-Y

g,water,I

rhg =
This equation expresses the gas mass flow rate emitted by a liquid surface under the
sole effect of the molecular mass diffusion. Such a situation occurs when the
temperature of the liquid and gas are in equilibrium.
We may observe this type of situation when drying clothes in a stream of dry air
(Y >0,Y =0). In this case, rﬁg >0 meaning that the gas mass

g,water,| g,water,o

increases while the cloth loses liquid. Conversely, if the air is humid and the cloth is
dry then m , < 0. Thereafter we consider energy aspects that will be important when

a thermal disequilibrium is present.

2.2 Examination of the interface energy jump relation

The corresponding equation has already been determined in the above simplified
system of equations,

(phu, +4g,)-n + (pghgug + qg)-ng =0,

where the heat flux is given by the sum of Fourier and energy transport by mass
diffusion terms,

q =-A4VT, - kakZ hoVYy
The mixture enthalpy is defined by h, = > Y, h,..

With the help of the mass flow rate definition, it becomes:

m|h|+q|-n|+mghg+qg~ng=0.

Inserting the heat flux definition we have,



m> Yh,=p DY VY, n —AVT -n+m>Y h —pD>hVY -n -2VT -n

or,

> h, (MY, =pDVY n)=AVT -n+>h (mY —pDVY -n)-AVT .n =0

From the mass conservation at the interface for each species i :

mY,-pDVY,-n+myY —p DVY . -n =0

The energy equation becomes,

> (h,—h )mY, -pDVY n)=AVT -n -2 VT -n =0

]

With the help of the Fourier law,

q, = -4VT,

As done previously with mass exchange, the Fourier law is replaced by a heat
exchange correlation. Indeed,

Ay "N =-4VT, 'Hk =H., (T _Tk,oo)

Where:

- H,, represents the heat exchange coefficient. This coefficient is expressed

with the Nusselt number correlations.
- T, isthe interface temperature.

- T, isthe temperature of phase k far away of the interface.

k.

The interface energy condition now becomes:

Z (hli - hgi)(rleli - ,O,H MI(YIi,I _Yli,w)) + HTI(TI _T|,oo) + HTg (TI _Tg,w) =0

Example: Reconsidering the previous example with a liquid made of pure water the

term where H , is present vanishes. The above relationship becomes:

ym + H (T, =T, )+ HTg(T _Tg,m)z 0

(hl,water - hg,water |

Therefore, a second expression for the mass flow rate appears:

H, (T, -T,.)+ HTg(TI _Tg,w)

Tl

g.,water - |, water

As the evaporation process is isobaric, the enthalpy difference corresponds to the
latent heat of vaporization:

]

=0



g.,water - I, water = Lv,water( )

Using the interface mass condition the gas mass flow rate reads:
HTI(TI,oo _T|)+ HTQ(T
Lv,water ( P )

-T,)

g,»

m, =
This relationship can be used to determine the mass flow rate when the effects of
concentration gradients are absent. This situation corresponds to the case of a drop of
liquid placed in steam-only gas environment. In this case the interface mass condition
(m, + rﬁg = 0) is automatically satisfied.

When the concentration gradients are present they must satisfy the interface condition
for each gas species together with the interface energy condition which complicates
the determination of the solution. Note also that the interface energy condition

requires the knowledge of H _, and the interface temperature T, .

Limit case 1: Let us consider a cold drop in a warm gas (Steam only) environment
(superheated steam). The temperature of the drop increases and after some time

reaches the saturation temperature T_ (P). At this moment the conditions are:
T,,=T,=T_(P).

The drop then continues evaporation at a rate controlled by the above relation
eliminating the term of H _:

H., (Tg‘w -T..(P))

Lv,water (P)

rT'] =
g9

Limit case 2: Let us now consider a drop and its surrounding vapor under rapid
pressure drop. In this expansion process the temperature within the liquid can exceed
the interface temperature. But considering local thermodynamic equilibrium at the
interface, its temperature is still given by:

T, =T_,(P)

In such situation, T > T, and we assume a uniform temperature profile inside the drop.

In such a process, the dominant term is H_ (T, - T ). The internal energy stored in

the liquid is responsible for its self-vaporization. This occurs for example in flashing
and cavitating flows.

3. Closure relations

Let us consider the evaporation model in the special case where only two chemical
species are present. The system to consider is made of the interface mass and energy
jump conditions. So both relationships for gas mass flow rate have to be considered:

-10-



ng Mg(Yg,water,I _Yg,water,oc)
1-Y

g,water,|

H_ (T

TI

_T)

g, I

~T)+H, (T

|,

rT'] =
9

L, (P)

This system involves 4 unknowns:m .Y ,T,,H_,. Indeed, the other variables

g,water,|

(such as for example gas-interface exchanges correlation or the pressure P ) are given
by appropriate correlations and flow variables of the two-phase mixture. These last
ones are determined by averaged equations of the two-phase flow model. Such system
corresponds to a set of partial differential equations for which the present mass
transfer model is a sub-model.

Heat transfer coefficient H _, inside the drop is unknown but the gas coefficient H

is easily determined from correlations based on the Nusselt number. This is because
the temperature measurement within a drop is nothing easy. Moreover, the field of the
internal flow in the droplet cannot be quantified from the information provided by the
macroscopic two-phase model. To our knowledge, no effective correlation is available
for the determination of this transfer coefficient. This is why conventional models in
principle not consider heating stage of drops before reaching the saturation
temperature. Next we address an approximate method to estimate of this heat
exchange coefficient. A relation for the determination of the vapor water

concentration at the interface Y is developed as well.

g,water,I

3.1 Determination of the liquid-interface heat exchange
coefficient

Let us consider a spherical drop as shown on the following picture:

-11-



Due to internal convection inside the drop, surface tension at the interface and heat
exchange with the gas it is not possible to address internal temperature profile inside
the drop in agreement with fundamental equations of this complex flow. We thus
consider a temperature profile that fulfils the basic constraints which are undoubted:

oT .
e —| =0 symmetry condition,
or r=0
e T =T condition at the interface,

— 1 -
e T :—jT(r)dV mean temperature definition.
Vv
Vv

The last relationship holds since the macroscopic two-phase flow model provides the
total energy average for a given phase and consequently it’s average temperature.
We then have three conditions that we can use to determine the algebraic form of the
temperature field. This profile may involve three parameters. We will then choose the
simplest profile involving only three parameters, i.e. a parabolic profile:

T(r):ar2+br+c

. A . .
After taking the derivative — = 2ar + b and applying the symmetry condition
or

oT

—| =0 weshallget b =0.
or

r=0
The second condition at the interface reads, T, = aR” + ¢ .

Integrating the temperature profile,

3 R
T, = —J'T (r)rzdr,
3
R 0
the following result is obtained,
_  3aR?2
T, = +C
5
: . N _  2aR?
After integrating and eliminating the constant ¢ we get: T, - T, =
5
S (TI B ﬁ)
Therefore, a =
2R2

The temperature profile thus reads,

-12-



Where 2, is the thermal conductivity. The heat exchange coefficient is given by:

q,, -n = HTI(TI _Tl,oo)

Since 1 - 0 o 5(T, - T))
ince n,=-u_,wegett 4, ————=H_(T,-T,.).

o0
R

Assuming that T, = T, the desirable relationship is obtained:

51,
HTI =T
R

This solution guarantees the energy conservation at the whole drop. It also
corresponds to an internal Nusselt number of 10.

3.2 Thermodynamic relationships at the interface

The last step is to determine the concentration of the vapor water at the interface
Y and the interface temperature T,. We aim to find an algebraic equation

g,water,I

which links these two variables.

The interface is in thermodynamic equilibrium which means:

a) T, =T, (thermal equilibrium)

P T|,|
b) Pg,l = I:’I,I

¢) wu,,=u, (chemical equilibrium - see Appendix A)

= P, (mechanical equilibrium)

These three conditions result in the partial pressure of vapor at the drop surface that it
is equal to the saturation pressure at the outlet interface temperature:

Pg,water,l = Psal (TI)

From the Dalton law for ideal gases the total pressure of the gas mixture is equal to
the sum of the partial pressures of individual gas species. For the vapor,

P V =n RT

g, ,water,| g,water,| I

The equation of state expressed at the interface for the gas mixture gives:

-13-



PV = z n, .. RT

. . . n.
Using the mole fraction definition x, = —— we get:
¥

Pg,water,l _ Psat(T|)

P P

g,water,|

In order to convert the mole fractions to mass fractions we apply the following

. nM.

relation: v, = ———,
> nM,
Where, M | is the molecular mass of species i. Moreover the mixture molar mass is
> nM,
definedby: M = -——.
>,
With this definition since M }" n. = 3" n.M, we obtain: Y, = x, —
i i M

: : M, P (™)

Which leads to the following formula, Y, = — —*——.
M P

Substitution of the expression for x_ ... gives,

_ M water Psat (TI)

g,water,| A

M P

3.3 System of governing equations

Two chemical species

The relationships that govern the evaporation rate when only two chemical species are
present (water and air for example) are the following:

n'] _ pg H Mg (Yg,water,l - Yg,water,oc) (A)
1-Y

g,water,]|

. H (T, T+ H (T, -T)
m, = ’ ’ ®)

Lv,water ( P)

-14-



M water sat,water (TI )
g ,water,| = N : (C>

M P

Since the heat exchange coefficient H _ was previously determined and the relation
P waer (T,) 18 provided by the phase diagram of the fluid in consideration, this

system comprises only 3 unknowns: m Y and T, . The mass fraction of the air

g,water,|

which is also involved in the calculation of the gas mixture molar mass is obtained
from:

g,water,| + g ,air, |

This system however is a highly nonlinear and specific solution procedure need to be

implemented. As an initial option the following procedure is proposed:

i) Start from an initial estimate of the interface temperature T, for mg =0.

H. T, +H. T

Tl |, Tg g.,»

Then from equation (B): T, =
H TI + H Tg

i) Calculate Y from (C) (must always lie inside the interval of [0,1]

g, water,|

iii) Calculate m  from (A)

+H. T -mL

TITI,oo Tg g,» g v,water(P)

H_ +H

Tl Tg

iv) Calculate the new T, from (B): T, =

Steps ii)-iv) are repeated until two values of T merge. This procedure will work

when the initial estimate is close to the desired value, ie at very low flow rates. In
highly dynamic conditions and in the presence of large differences in concentration
and temperature an algorithm of Newton type will be required.

Limit case — Water drop in its vapor

When the gas contains only vapor, we have: Y =Y =1 and relation (A)

g.,water, | g,water,o

is inappropriate.

For P =P (T,) orif T, =T_ (P) in(C)we get obviously: Y =1

sat,water g,water,I

The mass flow is thus obtained directly from the energy balance (B). The heating step
of the drop is nevertheless taken into account. Assuming further that the temperature

of the drop is uniform, so that heating is no longer possible (T, =T ) the flow rate
is obtained by:

-15-



H Tg (Tgyoo - Tsat,water(P ))

Lv,water ( P )

n:] =
9

Generalization of the model

The model can be generalized to the case where the system involves more than two
species. A typical example is those of liquid fuel drop initially placed in the air. The
evaporation produces a mixture of two species, air and liquid vapor. Then, if
combustion occurs a third component appears. This third component may be itself
multi-constituent, with some species possibly already present
in the air. In these cases all changes of these components need consideration.

Two cases are to be considered:

- The combustion product gas mixture is composed solely of new chemical species.
This depends on the combustion chemical reaction. In this case, this gas mixture can
be treated as a third chemical species.

- Otherwise, some of the chemical species of combustion products are already
present. In that instance all species concentration need determination and the system
is obviously complicated.

The following thermodynamic relationship determines the concentration of the gas
species at the evaporating side of the interface:

M ev Psat,ev (TI )

g.ev,l R

M P

Where the index ‘ev’ stands for evaporating species. The mass balance of the various
species read,
myY, ,+myY +p H, (Y, -Y,, ., )=0 Vi

11,1 g g,

The effects of molecular diffusion in the liquid phase have been omitted.
In the particular case where the liquid consists of a single species:

Y :1ande=O Vi#ev.

l,ev,I

The above balance equation can be written as,

m,+m_Y +ng

g g.ev,l| Mg(Yg,ev,I _Yg,ev,so

myY,i+tpPH o =Y, )=0 Vi#ev.

The first of these equations provides the mass flow rate:

ng Mg(Yg,ev,I - Yg,ev,oo)
1-Y

g,ev,l

rT.] =
g

-16-



The other equations provide the concentrations of the other constituents at the
interface:
pg H Mng,i.oO

Y =————7—7— Vi#ev
g.,i,l . H
mg+pg Mg

In the case where the liquid is constituted of only the evaporating species the
condition of interface energy is unchanged compared to the preceding case. It is used

for the calculation of T, :

Ho T, +H. T, -mL, (P)

Tl 1,0 Tg g,»

H +HTg

Tl
This system involves N species, one of them corresponding to the evaporating species
and N + 2 unknowns, the two additional unknowns being m , and T . The system
above contains N+1 equation. The last equation is provided by,
M

g,water,| N

M P

water sat,water( I

T)

The next step consists of the introduction of this submodel in the macroscopic
multiphase flow one. This step is the subject of the next section (or forthcoming
work).

Numerical method for solving the sub-model

As soon as the physical modelling is completed we have defined the system of the
governing equations we must proceed to the numerics. The target is to develop an
efficient, robust and reliable algorithm for the solution of the algebraic equations. Our
strategy is to combine the equations to find a nonlinear function of a single variable to
be solved. Physical constraints that should be satisfied are also used to test and
specify the best numerical method as far the three factors mentioned above. First we
apply some computations to transform mathematical relations to a more convenient
form:

Since right hand sides of relations (A), (B) so these can be written as:

H TI(TI,m - TI) +H Tg (Tg.w - TI) ng Mg(Yg.eau,I - Yg,eau.oo)

Lv‘eau (Tl) l_Y

g.eau,l

We get the relation of temperature as a function of mass fraction,

(H T + H T \_ Lv,water(Tl) ng Mg(Yg'WaIer'l -

TI 1w Tg g,» g,waler,oo)

I I(Y ) =
g,water,I|
TI Tg Tl Tg 1 Y

g,water,|

From relation (C) solving for pressure gives,

-17-



Psat,waler(Tl) = P Yg,water‘l

water

Combing these last two we get,

Psat(_l_l (Yg‘wateryl)) _ Psa[ j( H TITI,oc + H Tng,oo \_ Lv,water(Tl) ng Mg (Yg,water‘l - Yg‘water,m)l
HT|+HTg HT|+HTg 1-Y J

L g,water,|

M
= PY we get,

sa(,waler(Tl) g, water,1

Now since, p

water

(H. T +H_T ) L (T)p. H, (Y -Y )l M (Y )
Tl 1w T ,0 v,water I ™M ,water,| ,water, o ,water,|

f(Yg,water,I) = Psat j — - : : : : - : P Yg.water‘l = O

L H TI + H Tg H TI + H Tg 17 Yg,water,l J water
For a given temperature T , function f depends only on mass fraction v . .This
equation is supplemented with both mass fraction and temperature constraints. This
means f is valid only for certain values of these variables. These bounds must be
primary determined.
So, the equations to zero are,

T (Y ) _ ( H TITI‘x +H Tng,m \ Lv,WaIer(TI) ng Mg(Yg.water‘l - g‘water,eo)
1 g.water,1/ -
HTI+ HTg HTI+ HTg l_Yg,water,I
Or more explicit,
( H TITI,oo + H Tng.oo \_ Lv,water(TI) ng Mg(Yg‘water,l - Yg,water.m) _ T _ O
=
HTI+ HTg HTI+ HTg 1_Yg,water,l

And,

(H. T, +H_T )\ L (T)p H. (Y -y )| My )
f(ngwateryl) _ Psatj T 1o Tg g,» _ v,water I g Mg g,water,I| g.,water, _ g,water,| P Yg’waler’l _ O

L H TI + H Tg H TI + H Tg 1_ Yg‘water,l J water

for a given range of v and T, .

g,water,|

The method initially assumes an arbitrary value for L which corresponds to an

v,water

initial guess for temperature. Thus,

CHT L AH T L p H

Tg g, v,water Mg(Yg,water,I - g,waler,m)

T, (Y =

] g,water,l)

Ho +H o, Ho +H ., 1-Y

g, water,|
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We now have to determine the existence bounds for Y, . We denote this initial

,water,|

guess for T, (which may varies with the actual temperature) with 7" to distinguish it

from the same expression than uses the exact latent heat,

* ( H TITI,oo + H Tng,oo \ Lv,water ng Mg (Yg,waler‘l g,waler,w)

T = -
L HT|+Hg J HT|+HTg 1-

g.water,|

T will have a range of values from a minimum value T _, = 0K (Since negative

lo

temperature is not acceptable for saturation pressure calculation) to a

maximumT = T_. the fluid critical temperature which is also used as a physical

it

constraint.

Thus,

H T, +H T

Tg g,o *

HTI+HTg

g,water,o

(
|

|
I ng MgLv,waler
\ HTI+HTg

g,water,! -

HT,. +H, T

Tg g *

HTI-'—HTg

(
|

1+|
I ng MgLv,wa!er
K HTI-'—HTg

Therefore, setting T,, = 0k the lower fraction bound is:

(HTITI@ +H_T

Tg g,

Yg,water,m +
pg H Mg L v,water

(H, T, +H, T )

Tg g,»

1+
ng MgLv,waler

Y =

g.,water,I,low

This bound is obviously positive.

The upper bound is,
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H T, +HT

Tg g

HTI_'_HTQ

g,water,o

(
|

|
I ng MgLv,Wa!er
k HTI-‘_HTQ

g,water,l,up

H. T, +H_ T

T 1w Tg g,»

HTI_‘_HTg

ng MgLv‘water

(
|
l+|
|
|
k HTI+HTg

This bound has to be less than 1. This is not obvious as for the moment, T is more

or less arbitrary.

Therefore, in order that temperature T, stays positive, Y must belong to the

g,water,|

interval:

<Y <Y
g,water,l,low g,water,| g,water,l,up

The precise value of v is then determined by solving,

g,water,|

H TITI,ac + H Tng,ao \ Lv,water(Tl) ng Mg (Yg,water,l - Yg,water,m)l_ M (Yg,water,l)

(
f(Yg,water,l) = Psatj - P Yg.water‘l =0
L H TI + H Tg H TI + H Tg 17 Yg,water,l J water
When v_ .. isdetermined, T is computed by,
* ( H TlTl,oc +H Tng,Oc \ Lv,water ng Mg (Yg,water,l - g,waler,x)
TI = T (Yg,water,l) = -
HTI + HTg HTI + HTg 17Yg,water,l

This (new) T, is used to compute L (T,) that is used for the next time step in the

same computational cell. Latent heat is an important factor that can -effect
computations and is updated at every new temperature.

The steps for the solution of the sub-model:
1. Define minimum and maximum temperature

2. Define desired accuracy of solution

3. Make an initial guess for L (t7,) for aninitial 7°

Vv,water |

4. Fix the initial bounds for v _,
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5. Determine v, “sothat f(y_ )=0 (or ‘f(Y

<1pPa ). This can be done by

I gwl)

dichotomy for example.

6. Compute the new temperature 7" = T7 (Y

gwl)
7. Check if the difference 7™ — 7" is smaller than the desired accuracy

8. Update L (t,"") for the new temperature and go to 4.

V,water

9. Find the new bounds for v,

10. If temperature convergences then verify that initial expressions (A),(B),(C) are
reasonable

Solving the non-linear equation

The last task we have to work on is choosing an appropriate method for solving the
non- linear equation f(y_ ) =0 numerically. Starting from some approximate trial

gwl
solution, an algorithm will improve the solution until the desired convergence
criterion is satisfied. Zero finding depends on a good first guess. However it is not the
only thing that can affect the solution. An insight analysis of the problem is required
to apply or modify a method so that it successfully solves the problem taking in
concern all the necessary constraints.

We are always looking to bracket the root by the sign changes of the function. That is
the reason that the range of function f(v_,,) is always updated. Solution must be

inside this range and a good algorithm should not get outside of this bounds.

The equations we want to solve are approximately like this:
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Temperature
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Figure 1. Equation f (Y ) for constant latent heat, L = 2-10°J/k g
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Figure 2. Function T(Y ) for constant latent heat, L = 2 10°J / kg
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Dichotomy method

In this method, evaluation of the function is made inside a sub-interval of the bracket
that we fix at every iteration. This sub-interval is divided by two at every sign change.
This method is successfully applied with a small number of iteration (less than ten).

Let a b, be the endpoints at the n-th iteration (with a, = v and b, = v ") and let r,_be

, , , , 1 ,
the n-th approximate solution. Then r_is defined by r = —(a +b ) and the interval now
2

b-a

has lengthequalto b -a, = ——.

2
Secant (False position) method
Again the method is applied at the bracket we fix in order for the function f (v, ) to

be valid. If solution is bracketed between a, and b_ at the n-th iteration, then the new
root estimate r_ is,

b f(a,)-a f(b )
r =
f(a,)-f(b))

This method is faster than dichotomy but convergences to solution that lies close
toT, . .

Chord method

This method does not differ from the previous in only exception: that keeps the most
recent of the prior estimates and as in Secant (False Position) method, the function is
assumed to be linear close to the solution, so the slope between to estimate points is
given by,

So the new root guess is,

f(xnf1)(xnf1_ anz)

fix, )T, )

X =X

n n-1

The root does not necessarily remains bracketed or the solution can be slow because
of the function’s local behaviour. This issue also occurs at Newton’s method (where
again the solution lies close toT_, ).

Ridders’ method

It is a slightly different from the two others. The root is bracketed between two values
and evaluation is done at their midpoint. The new idea here is that it uses an
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exponential function which turns the residual function into a straight line [4], giving a
new guess for the root. It can be superlinear and gives successfully a root. One can
use different accuracy levels for the two equations. If the root is bracketed inside two

points x,and x, and x, = 3(xl + x,) Is their midpoint, then the new root guess is,
2

sign [f(x,) - f(x,)]f(x,)

xl
\/f(x3)2—f(x1)f(x2)

X, =X+ (X~

Newton-Raphson Method

Newton’s method is faster but evaluates the function f(v_ ) and its derivative.

The root estimate is provided by,

Newton’s formula uses the 1% order derivative which is computed numerically:

fOY +dY) - f(Y)
dy

£1(Y) =

Solution can go out of the brackets especially near a horizontal asymptote.
Newton and Dichotomy method [4]

This method takes a bisection whenever Newton iterations would take the solution out
of bounds of whenever the size of brackets is not reducing rapidly enough.

Brent method

On each iteration Brent's method approximates the function using an interpolating
curve. On the first iteration this is a linear interpolation of the two endpoints. For
subsequent iterations the algorithm uses an inverse quadratic fit to the last three
points, for higher accuracy. The intercept of the interpolating curve with the x-axis is
taken as a guess for the root. If it lies within the bounds of the current interval then the
interpolating point is accepted, and used to generate a smaller interval. If the
interpolating point is not accepted then the algorithm falls back to an ordinary
bisection step. The best estimate of the root is taken from the most recent
interpolation or bisection.

X =X, +—
Q

Where,

P=S[T(R-T)(x,-x,)-(1-R)(x,-x,)]

0= (T-1)R-1)s-1) and r = K2 o FOG) o 1)

f(x,) f(x,)  f(x,)

The following table summarizes the each method’s performance for one simple call,
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Newton&
Dichotomy Secant Chord | Ridders | Newton Brent
Dichotomy
Iterations 7 3 3 6 3 5 5
RE‘SZE')TG 0.004 0003 | 0003 | 0002 | 0.003 0.002 0.002
Accuracy 1.d-06 1.d-06 1.d-06 1.d-08 1.d06 1.d-06 1.d-6
Solution Yes No No Yes No Yes Yes
For 1,000,000 calls
Newton&
Dichotomy Secant Chord Ridders Newton Brent
Dichotomy
Iterations 7 3 3 6 3 5 5
5::]2* 1m58.6s | 0m8.470s | 0.8470s | 1m33.833s | 0Om18.004s | 3m17.780s | 1m13.001s
Accuracy 1.d-06 1.d-06 1.d-06 1.d-08 1.d06 1.d-06 1.d-6
Solution Yes No No Yes No Yes Yes

*Time estimation for an Intel (R) Celeron (R) CPU B815 @ 1.60GHz processor.

The reason that Secant (False Position), Chord and Newton-Raphson methods give
different solution from the other methods and fail to give a solution that confirms

initial equations for a temperature far away from T
criterion is determined: root search stops is the difference ™" - 1

min 7

is the way temperature
°“is smaller than

the desired accuracy. This is why Ridders’ method that uses different accuracy levels
successes.

-25-




CPU Time(m)

CPU Time(m)

3.5 T T T R | T
Bisection ———
Ridders —
Mewton&Bisection ———
3 | Brent —— |
25 F .
2 | _
15
1 1 1 1 1 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8
Mass Fraction
Figure 3. CPU time for 10° calls for different mass fractions.
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Figure 4. CPU time for 10 ° calls for different temperatures.
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3.4 Coupling with the Two-Phase model

To illustrate the method we coupled it with a two phase model [5]. The model
allows two phases for multicomponent fluids and performs a relaxation of pressure.
At the test case that follows there is a shock tube where in the first domain there is air
with volume fraction 0.9 that contains air and vapor water (mass fraction is equal to
0.2) and pure water with volume fraction 0.10. The left part of the computational
domain (high-pressure area) has pressure equal to 100bar and the right domain has
1bar (low-pressure area). Both domains have temperatures equal to 300K.

Mass flow rate (Liquid to Gas)
200 I T T I T T T I T

180 |- -
160 |- -
140 | -
120 | -
100 |- -
80 | -
60 | -
40 | -

20 - -

0

-20 I 1 1 I 1 1 1 I 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5. Mass flow rate in the shock tube through time evolution. In the shock wave region
the amount of liquid that evaporates increases.
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Mass fraction Gas phase - Air
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0.788 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6. Mass fraction of gas phase in the shock tube through time evolution. It increases at
the shock wave area.

Mass fraction Gas phase - Vapor Water

0.212 T T T T T T T T T
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0.208

0.206

0.204

0.202

0.2 1 1 I 1 I 1 t
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7. Mass fraction of liquid phase in the shock tube through time evolution. It decreases
at the shock wave area.
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Figure 8a) Density of gas phase in the shock tube

through time evolution.
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Figure 9a) Volume fraction of gas phase in the

shock tube through time evolution.

Figure 8b) Density of liquid phase in the shock tube through

time evolution.
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Figure 9a) Volume fraction of gas phase in the shock tube

through time evolution.
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Figure 10. Velocities of both gas and liquid phases inside the tube, through time evolution.
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Temperature of Gas and Liquid phases
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Figure 11. Temperatures of both gas and liquid phases inside the tube, through time evolution.

Initially we assume thermodynamic equilibrium and the vapor pressure is equal to
its saturated value. The shock increases vapor pressure that leads to condensation. The
drag force at the drops inside the gas phase causes a heat transfer from the gas to the
drops. The latent heat that is released increases the temperature inside the drops.
When the vapor pressure becomes smaller than the saturated vapor pressure, the drops
start to evaporate causing the radius of the drops to change (fig. 12). In this case the
heat transfer occurs from the drops to the gas. The rate that temperature changes,
decreases. If the temperature in the high and low domain are initially the same, there
will not be a uniform temperature between the shock wave and the expansion wave.

The mass flow rate is greater than zero and smaller at the high pressure domain
where the expansion wave travels, but increases significantly in the area of the shock
wave in the low pressure region. The expansion wave that travels in the left domain
changes weaker the phase velocity, density and pressure whereas the shock wave
more effectively them as expected. The reason that these changes do not occur with
the same rate in the two phases is due to the difference in the compressibility of the
fluids. Moreover at the left domain, water is forced to increase the pressure and
decreases its volume fraction leading to an increase at air’s volume fraction (fig. 9a-
9b). The exact opposite effects hold on the left domain.
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Particule radius
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Figure 12. Radius of a single drop in the shock tube through time evolution for uniform
temperature at 300K.

Appendix A — Chemical equilibrium

Each chemical reaction involves reactants and products. In chemical equilibrium the
concentrations on both sides of the reaction are time invariant.

Introducing the chemical potential . as the partial molar free energy of a chemical
species of a mixture with n species each one having N, moles we have:

dG = -SdT +Vdp + > wx,dN,
i=1
At thermal and mechanical equilibrium it reduces to:
dG =) wdN,
i=1
Then each of the , of species i can be explicitly defined as,

LON)

At chemical equilibrium, the system Gibbs free energy reaches its minimum. It
means,
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dG =0

Which by the above definition gives,
> wdN, =0

Considering a liquid vapor phase change situation,
(AN |+ yngg =0
Mass conservation implies,
dN, +dN_=0,
as the liquid and gas molar masses are equal.

Therefore,
(#,=ny)dN, =0

As around equilibriumdN | is small but non zero, the chemical equilibrium condition
iS now written as,

M= H

Appendix B — Equation of state

Stiffened Gas Equation of state (EOS)

The equation of state and the calculation of the conventional properties of the phase
diagram and useful fluid quantities are described below. Stiffened gas which is
applied (SG EOS) can be written as a pressure law:

p(p.e)=(yr-1)pe-e)-rp,

Where »,e,and p_ are parameters related to the fluid. Here e, defines the zero point
for the internal energy and becomes relevant when phase transitions are involved. The
parameter p_ leads to the stiffed properties compared to ideal gases meaning that

large values of p_ implies an almost incompressible behavior of fluid.

Calculation of flow properties:

e(p,u)=p+yp°°v+q (1)
y =1
~1)C T

o(p.Ty = LHNET @
P+7yp,
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h(T)=7C,T +q 3)

. T’
g(p,T)=(C,-q)T -C_Tlog +q 4)
(p+p, )r -1

where e is the specific internal energy, h is the enthalpy, p the pressure, v =1/ p
the specific volume, T is the temperature, g the Gibbs free energy and

7,p,.C,.0,q are specific fluid constant.

A method to determine the above quantities in two phase systems is given in Le
Metayer et al. (2004). The coupling of gas and liquid parameters is particularly
examined.

Computation method

The parameters involved in the SG EOS are determined from experimental curves for
each fluid. In the case of liquid evaporation saturation curves are considered:

p = psat (T )’ h ,exp (T )’ h g,exp (T )’Ul,exp (T )’Ug,exp (T )
and the latent heat of evaporation L, (T)=h__ (T)-h  (T)

e From equation of enthalpy (c) we have:
dh,
daT

=C for each k=I,g

v,k p.k

:}/kC

Heat capacity factors C , can be determined by a linear interpolation between two

k

reference states 0 and 1 as:

e (T1) = (To)
C,, =—2— Kexp ” 0 for each k=I,g
Y Tl_TO

Reference energies are now expressed as:

Ay =N (Te) = C T, for each k=I,g

e With the saturation pressure curve p = p

(c ,-C T
v (T) = & = for each k=I,g (5)
(P (T)+p,,)

(T ) the specific volume is:

sat

The relation may be written with logarithms as:

dlog(v,(T)) =dlog(T) -dlog(p,(T)+p, ) for each k =l,g
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Integration between the two reference states 0 and 1 yields:

log(v, (T,)) = log(v,(T,)) = log(T,) - In(T,) = log(p,, (T)) +p,,) +log(p,(T))+p,,)

Solving for p , we get:

k

)T T,) -0, (T)T T
pw'k — Uk( O) lpsat( 0) Uk( 1) Opsat( l) vk =|,g

Ly (Tl)TD Uy (To )Tl

e Equation (5) applied to the reference state O provides the approximation of the

heat capacity factor C , :

v (T,)
To(Pu(Ty) + P, )

vk =1,¢9

v,k p.k

e  Constant y, now is:

p.k

7. = vk =1,g

v,k

e At thermodynamic equilibrium the two Gibbs free energies have to be equal
g, = 9, Thisimplies:

B
log(p+ p,,)=A+—+Clog(T)+ Dlog(p+p,,) (6)
: T :

Where constants A, B,C and D that depend on the SG EOS parameters with the
following correlations:

A CoCostdiar o amd, G =G
CPQ_CUQ vag_CUQ CPQ_CUQ
D— C:p,I_C:UI
c -C

Relationship (6) is non-linear but permits the computation of the theoretical curve
p=p,,(T).Entropy constants (q,) are also needed for each phase. To do this we

consider that q, = 0 and choose a q, to fit properly with the experiments curves.
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Mixture SG EOS

For a mixture containing 2 species with mass and volume fractions Y ,Y,,a ., «a,
respectively the internal energy is defined as:

pe=a,pl +a,p,k,
By using the SG EOS (1) each product p e, can be written as:

P+ 7Pk
P& = + P4,
7 —1

The pressure of the mixture is now expressed with:

al}/lpoc,l a2y2 pw,Z
ple-Y q,-Y,q,)—( + )
7, -1 7,1

%, o,

+
7v,-1 y,-1

p(p.e,a,a,,Y ,Y,)=
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